• 首页
  • 关于我们
    • 公司简介
    • 汇款资料
  • 产品中心
    • 可控硅
    • 二极管
    • 三极管
    • 场效应管
    • IC光耦
    • PPTC自恢复保险丝
  • 新闻中心
    • 企业新闻
    • 技术方案
    • 技术园地
    • 行业动态
    • 新闻时事
  • 应用领域
    • 产品资讯
    • 应用线路
  • 人才招聘
  • 联系我们
    首页 > 新闻中心 > 技术园地

    快速恢复二极管打火问题的优化设计

    来源:凯高达资讯组 时间:2012-05-07 浏览次数:2373

    引 言

      快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短的半导体二极管。对于高压工作的FRD来说,平面工艺不可避免的存在着结面弯曲效应而影响击穿电压,使得器件实际击穿电压只有理想情况的10%-30%。因此为了保证FRD能工作在高电压下,就需要使用结终端技术来消除结面弯曲带来的影响,提高FRD器件的耐压。在提高耐压采用终端技术的同时,还要兼顾到其它特性的影响和优化。如本文后面将要提到的,在采用金属场板终端提高耐压的同时,还要防止圆片打火问题的发生。

      1场限环的基本结构

      图1:场限环结构示意图

      

     

      图2:多个场限环结构示意图

      

     

      场限环的基本结构见图1,图2.。就是在被保护的主结周围间隔一定距离,扩散形成一定大小的同心环。扩散环改变了主结边缘空间电荷分布,减轻了电场集中效应。提高了耐压。单环的作用有限,一般在高压下需要通过多个环来达到预定的电压。

      2 场板的基本结构分析

      图3:场板结构示意图

      

     

      场板的基本结构见图3,也是常用的提高耐压的方法之一。场板下除边缘部分外,电场分布是一维的,类似于MOS电容。击穿时的击穿电压为击穿时半导体的电压和氧化层的压降之和。在场版的边缘,电力线集中。如果场板长度比内部耗尽层还大,N+P结的场板有电力线从板向半导体发出,在半导体表面有电力线进入,这等效于半导体表面有正电荷,他对电场的影响可看做是无穷大的半导体中间增加了一层电荷,这些正电荷产生垂直于表面的场外,也将产生平行于表面的场,每一正电荷在其左边产生指向左的场,在其右边产生指向右的场。所以在场版下面的多数区域,正电荷产生的横向电场是互相削弱。然而在场板的边缘,所有正电荷产生的横向场是互相加强的,结果在那里造成一个横向场的峰值。如果场板很短或者无场板时,在PN结的边缘就有很强的电场,场板上所有正电荷都是使这点电场减少的,因此场板愈长,电场峰值愈小。

      3 气隙的击穿特性

      我们知道,影响空气间隙放电电压的因素有很多。主要有电场的情况,比如均匀与不均匀;电压的形式,比如直流,交流还是雷电冲击;大气的条件,比如温度,湿度,气压等。较均匀电场气隙的击穿电压与电压极性无关,直流,工频击穿电压(峰值)以及50%冲击击穿电压都相同,分散性很小。

      

     

      当S不过于小时(S>1cm), 均匀空气中的电场强度大致等于30KV/cm。稍不均匀的电场气隙的击穿电压,可以看作球与球之间,球与板之间,圆柱与棒之间,同轴圆柱的间隙之间的击穿。它的特点是不能形成稳定的电晕放电,电场不对称时,有极性效应,不很明显,直流,工频下的击穿电压以及50%冲击击穿电压相同,分散性不大,击穿电压和电场均匀程度关系极大,电场越均匀,同样间隙距离下的击穿电压就越高。直流电压下的击穿电压具有极性效应,棒棒电极间的击穿电压介于极性不同的棒板电极之间,平均击穿场强正棒和负板间约4.5KV/cm,负棒和正板间约10KV/cm,棒和棒之间约4.8-5KV/cm。击穿电压与间隙距离接近正比,在一定范围内,击穿电压与间隙距离呈线性关系。球与球间隙之间存在邻近效应,对电场会有畸变作用,使间隙电场分布不对称,同一距离下,球直径越大,击穿电压也越高。

      图4 击穿电压与间隙距离的关系

      

     

     

    4 实验过程

     

      4.1失效现象与分析

      FRD在开发过程中工程批流片出来后测试击穿电压,当电压加到几百伏时,可开始看到有严重的打火现象,测试打火曲线如图5,打火发生后,圆片上可看到终端外围两个金属铝条有明显发黑的迹象,如图6。

      图5 FRD 圆片击穿电压测试曲线

      

     

      图6 FRD 圆片打火位置图片

      

     

      其中距离cell区较近的金属是终端的一个金属场板,在最外围的一个是截止环的金属。从失效现象来看,打火应该是最外围的两个金属之间进行的。工艺上,当初为了节省成本,金属完成后没有加钝化层次,因此两个金属之间是没有氧化等介质的。检查版上数据,金属场板到截止环金属之间距离为72um,怀疑可能此距离太小,又没有介质,因此导致金属之间电场过强,引起打火,为了验证,特对原结构进行了模拟。

      4.2原结构模拟结果

      如图7所示原始结构进行模拟,结果击穿电压约1500V,最外围的金属场板与最外围截止环金属之间电势差约800V,最外围场板承担了较大的电压,从表面电场分布看,最外围金属场板处表面电场最强,约2.6E5V/cm,前面其它环的电场基本在1.6E5V/cm左右,金属场板处电场较集中。而空气的击穿场强约为30KV/cm,金属场环和截止环之间距离为72um,空气耐压约220V,据此推断失效的原因应该是金属之间距离较近,电压较大引起空气击穿,从而发生打火现象。

      图7:FRD 原版结构

      

     

      图8 FRD原版模拟结果电势分布图

      

     

      图9 FRD原版模拟结果表面电场分布图

      

    4.3 新设计模拟

     

      由以上分析认为,圆片测试打火的主要原因在金属场板和截止环金属之间电势较大,引起金属间打火,下一步主要从考虑降低两者之间的电势,减小金属场板处的表面电场出发,进行了以下模拟。

      4.3.1增加两个环

      考虑在金属场板前再增加两个场限环,使得前面的分压增加,以减少金属之间的电势差,模拟结果如下,FRD击穿电压没有改变,仍旧在1500V,金属场板和截止环之间的电势从800V降到约500V,表面电场从2.6E5V/cm降低到1.7E5V/cm。

      图10:FRD增加两个环后结构

      

     

      图11 FRD增加两个环后电势分布图

      

     

      图12 FRD增加两个环后表面电场分布图

      

     

      4.3.2增加三个环

      从增加两个环的结果看,增加环后电势和电场都有改善,于是考虑增加三个环,模拟结果如下,FRD击穿电压没有改变,仍旧在1500V, 金属场板和截止环之间的电势降为约400V,表面电场由2.6E5V/cm降低到1.2E5V/cm。

      图13 增加3个环后结构

      

     

      图14 增加三个环后电势分布图

      

     

      图15 增加三个环后表面电场分布图

      

     

      4 结论分析

      从以上模拟结果可以看到,通过优化终端结构,可以有效减少金属之间电势差,改善表面电场分布,从而改善圆片测试打火现象。同时,工艺上可考虑在增加环的同时增加金属后钝化层,以更好的改善产品性能。

    上一篇:电阻噪声来源 下一篇:LED照明产品的五个生产流程
      • 首页
      • 关于我们
        • 公司简介
        • 汇款资料
      • 产品中心
        • 可控硅
        • 二极管
        • 三极管
        • 场效应管
        • IC光耦
        • PPTC自恢复保险丝
      • 新闻中心
        • 企业新闻
        • 技术方案
        • 技术园地
        • 行业动态
        • 新闻时事
      • 应用领域
        • 产品资讯
        • 应用线路
      • 人才招聘
      • 联系我们
      深圳市凯高达科技有限公司

      公司地址:深圳市宝安区新安街道39区13栋一楼

      联系电话:0755-27840223

      公司传真:0755-27840223

      友情链接:
      • 凯高达可控硅八方采购网
      • 凯高达阿里巴巴旗舰店
      • 凯高达科技网站优化1
      • 凯高达科技网站优化2
      • 化妆品代加工
      • uv油墨喷码机
      技术支持:优橙科技 深圳市凯高达科技有限公司 版权所有 ICP备案号:粤ICP备11052724号-6

      工商执照